Weighting Unusual Feature Types
نویسندگان
چکیده
Feature weighting is known empirically to improve classification accuracy for k-nearest neighbor classifiers in tasks with irrelevant features. Many feature weighting algorithms are designed to work with symbolic features, or numeric features, or both, but cannot be applied to problems with features that do not fit these categories. This paper presents a new k-nearest neighbor feature weighting algorithm that works with any kind of feature for which a distance function can be defined. Applied to an image classification task with unusual set-like features, the technique improves classification accuracy significantly. In tests on standard data sets from the UCI repository, the technique yields improvements comparable to weighting features by information
منابع مشابه
Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملAnalysis of Feature Weighting Methods Based on Feature Ranking Methods for Classification
We propose and analyze new fast feature weighting algorithms based on different types of feature ranking. Feature weighting may be much faster than feature selection because there is no need to find cut-threshold in the raking. Presented weighting schemes may be combined with several distance based classifiers like SVM, kNN or RBF network (and not only). Results shows that such method can be su...
متن کاملA Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection
K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...
متن کاملA Design of Analysis Model using Feature Weighting on CBR Method
This paper is a principal idea of case-based reasoning to feature weighting. The feature weighting method called CaDFeW (CAse-based Dynamic FEature Weighting) stores classification performance of randomly generated feature weight vectors. Also it retrieve similar feature weighting success story from the feature weighting case base and then designs a better feature weight vector dynamically for ...
متن کاملGenetic Algorithms for Feature Selection and Weighting
Automated techniques to optimise the retrieval of relevant cases in a CBR system are desirable as a way to reduce the expensive knowledge acquisition phase. This paper concentrates on feature selection methods that assist in indexing the case-base, and feature weighting methods that improve the similarity-based selection of relevant cases. Two main types of method are presented: filter methods ...
متن کامل